	Topic *= Benchmark Assessed on Common Final Exam	Learning Targets	Suggested Pacing
		This course has a cumulative year-long Common Final Exam	
Unit 1 – Intro to Chemistry	 T1- Data Collection & Analysis (N.1.1, N.1.6, N.2.3, MACC.912.N-Q.1.1, MACC.912.N-Q.1.3, MACC.912.F-IF.3.7) Choosing & Interpreting Units & Labels Precision vs. Accuracy Significant Figures Percent Error Dimensional Analysis Creating & Interpreting Graphs Characteristics of Science & Methods 	 Define a problem based on chemistry and design an experiment to investigate, collect and analyze data, and pose explanations supported by data collected. (N.1.1) Collect Data/Evidence use tables/graphs to draw conclusions, and make inferences based on patterns or trends in the data. (N.1.6) Determine the number of significant figures in measurements and calculations. Explain the difference between precision and accuracy. Calculate and explain the concept of percent error. (N-Q.1.3) Recognize the importance of using units and labels while showing work. Identify the steps taken during multi-step problems by showing work during dimensional analysis. Create the appropriate type of graph to represent and plot data. (N-Q.1.1) Create and interpret the key features of various types of graphs (as available technology permits). (F-IF.3.7) Differentiate between what is science and what is not science (religion, opinion or belief). (N.2.3) Honors Identify the strict standards of science and explain how pseudoscience does not adhere to those standards. (N.2.3) Honors 	6 Days 3 Blocks Aug 19 th - Aug 26 th Unit 1 Quiz Aug 26 th
Unit 2 – Forms of Matter	 T1 – Matter & Change (*P.8.1, *P.8.2) Particles and four states of Matter Physical vs. Chemical Properties 	 Identify and describe the four states of matter (solid, liquid, gas, plasma) in terms of energy, phase transitions, arrangement, and movement of particles. (*P.8.1) Differentiate between physical and chemical properties of matter (volume, compressibility, density, conductivity, malleability, reactivity, molecular composition, freezing point, melting points, boiling point). (*P.8.2) Distinguish between an element, a compound, and a mixture. (*P.8.2) 	4 Days 2 Blocks Aug 27 th – Aug 30 th
	 T2 - Methods & Experiments (*P.8.2) Physical vs. Chemical Changes Mixture Types & Separation Techniques 	 Identify physical and chemical changes in matter. (*P.8.2) Differentiate between heterogeneous and homogenous mixtures. (*P.8.2) Describe how to separate various types of mixtures using simple laboratory techniques (filtration, distillation, chromatography, evaporation) based on physical properties. (*P.8.2) 	6 Days 3 Blocks Sept 3 rd – Sept 10 th Unit 2 Test Sept 11 th

	Topic *= Benchmark Assessed on Common Final Exam	Learning Targets	Suggested Pacing
Unit 3- Structure of Matter	 T1 – Atom (*P.8.4, *P.8.3, N.3.5, N.1.2, N.1.5, N.2.4, N.2.5, N.3.1, N.3.3, N.3.2) Modern Atomic Theory Development of the Atomic Model due to Experimental Evidence Consensus in the Development of a Theory Contributions to Science 	 Compare & contrast the proton, neutron, and electron based on mass, electrical charge, and location in the atom. (*P.8.4) Explain the existence of neutrons and how they affect an element's mass (isotopes). (*P.8.4) Calculate the relative atomic mass of an element. (*P.8.4) Explain the order in which the proton, neutron, and electron were discovered. (*P.8.3) Identify changes in the atomic model from ancient to modern times. (*P.8.3, N.3.5) Describe the following scientists and experiments and their importance to the development of modern atomic theory: Dalton, Rutherford's Gold-foil, Thompson's cathode ray tube, Bohr's planetary model, Millikan's oil drop experiment. Recognize the various backgrounds of each scientist influence the explanations they made towards modern atomic theory. (*P.8.3, N.2.5, N.3.5) Describe criteria for science (testable, can be verified, derived from experimentation and observations, systematic, seeks to falsify claims through testing, relies on empirical evidence). (N.1.2) Describe science as both durable (long-lasting), robust (strongly supported by data from repeated experimentation) and yet open to change. (N.2.4) Explain the difference between scientific theories and scientific laws. Describe the role consensus plays in the development of a theory. (N.3.3, N. 3.2) Recognize that contributions to science can be made and have been made by many people from all over the world. (N.1.5) Differentiate between a hypothesis and a theory. (N.3.1) Honors Recognize that theories evolve over time based on new information and technology. (N.3.1) Honors 	4 Days 2 Block Sept 12 th – Sept 17 th
Unit 3- Str	 T2 - Electromagnetism (*P.10.18) Wavelength vs. Frequency Energy Levels in the EMS Spectrum 	 Explain the inverse relationship between wavelength and frequency. (*P.10.18) Compare & contrast the different parts of the EM spectrum (radio, micro, infrared, visible light, UV, X-rays, gamma) in terms of energy. (*P.10.18) Explain what happens to an electron when it absorbs or releases energy. (*P.10.18) Perform calculations to determine the wavelength or frequency given the speed of light. (P.10.18) 	4 Days 2 Blocks Sept 18 th – Sept 23 rd
	 T3 – Quantum Theory (*P.10.9) Quantization of Energy at Atomic Level Energy Levels, Sublevels & Orbitals 	 Explain the relationship between an electron's distance from the nucleus and its (absorbing or emitting) energy using the Bohr model. (*P.10.9) Compare & contrast energy levels, sublevels, and orbitals. (*P.10.9) 	2 Days 1 Blocks Sept 24 th – Sept 25 th Unit 3 Test Sept 26 th

	Topic *= Benchmark Assessed on Common Final Exam	Learning Targets	Suggested Pacing
Periodic Table	 T1 – Introduction & Layout (*P.8.5, N.1.4) Groups & Periods Octet Rule Electron Configuration Aufbau, Pauli & Hund Concepts Reliable Sources 	 Explain the arrangement of elements on the periodic table according to periodic law and the octet rule. (*P.8.5) Identify the following groups on the periodic table: Alkali metals, Alkali Earth metals, Transition metals, Inner Transition metals, Metalloids, Halogens (halides), and Noble gases. (*P.8.5) Apply the concepts of Aufbau, Pauli, and Hund to determine the location of an electron in the atom. (*P.8.5) Identify and write the electron configurations for elements 1-36 in multiple ways. (*P.8.5) Determine an atom's location on the periodic table based on its electron configuration (and vice versa). (*P.8.5) Research elements on the periodic table using reliable sources of information that follow the strict standards of science. (N.1.4) 	6 Days 3 Blocks Sept 27 th – Oct 4 th
Unit 4 – F	 T2 – Periodic Trends (*P.8.5) Reactivity, Radius, Electronegativity & Ionization Energy 	 Explain what happens to an atom's radius, electronegativity, and ionization energy as you go across a period or down a group of the periodic table based on nuclear charge and shielding electrons. (*P.8.5) Compare an ion's radius to its atom's radius. (*P.8.5) Compare different elements' reactivity based on positioning on the periodic table. (*P.8.5) 	4 Days 2 Blocks Oct 7 th – Oct 10 th Unit 4 Test Oct 11 th
		End of Quarter 1	

Topic *= Benchmark Assessed on Common Final Exam	Learning Targets	Suggested Pacing
T1- Bonding (*P.8.6, P.8.12 Ionic vs. Covalent Bond Characteristics Lewis Structures Metallic Bond Bonding Characteristics Of Carbon (H)	 •Predict the type of bond in a binary compound based on the position of its elements on the periodic table. (*P.8.6) •Predict bonding polarity based on electronegativity differences. (*P.8.6) •Determine Lewis structures containing single or multiple bonds. (*P.8.6) •Discuss the repeating arrangement of ions in crystals. (P.8.6) •Explain the electron sea model of metallic bonding and relate it to the properties of metals. (P.8.6) 	6 Days 3 Blocks Oct 15 th – Oct 22 nd

	Topic *= Benchmark Assessed on Common Final Exam	Learning Targets	Suggested Pacing		
	 T2 – Naming (*P.8.7, P.8.13) Ionic Compounds Binary Molecular Compounds 	 Identify the names of ionic compounds when given the chemical formula. (*P.8.7) Name the chemical formulas for binary molecular compounds. (*P.8.7) Identify the functional groups sugars, proteins, nucleotides, amino acids, hydroxyl groups which form alcohols, carbonyl groups 	6 Days 3 Blocks Oct 23 rd – Oct 30 th		
	 Functional Groups (H) 	which form aldehydes/ketones, carboxyl groups which form carboxylic acids, and identify their properties when added to a hydrocarbon. (<i>P.8.13</i>) Honors	000 30*		
	 T3 – Formula Writing (*P.8.7) Binary & Tertiary Ionic Compounds Binary Molecular Compounds 	 Determine the formula for binary and tertiary ionic compounds when given the name. (*P.8.7) Determine the formula for binary molecular compounds when given the name. (*P.8.7) 	6 Days 3 Blocks Oct 31 st – Nov 7 th Unit 5 Test Nov 8 th		
	T1 – Chemical Equations (*P.8.8, *P.8.9, <mark>P.8.10,</mark> P.10.2)	 Determine the type of chemical reaction given the chemical equation (redox, acid-base, synthesis, decomposition, single-replacement, double-replacement, combustion). (*P.8.8) Balance a chemical equation. (*P.8.9) 	10 Days 5 Blocks		
	 Reaction Types Oxidation-Reduction	• <i>Relate</i> the law of conservation of mass to balancing a chemical equation. (*P.8.9)	Nov 11 th – Nov 22 nd		
Unit 6 – Chemical Reactions	 Reactions in Living and Non-living Systems (H) Balance Chemical Equations Conservation of Energy 	 Describe what happens during oxidation and reduction in terms of: loss or gain of electrons, increase or decrease of oxidation numbers, loss or gain of oxygen, and loss or gain of hydrogen. (P.8.10) Honors Assign oxidation numbers and classify half reactions as either oxidation or reduction. (P.8.10) Honors Write a chemical reaction that depicts energy as a product or reactant. (P.10.2) Honors Define enthalpy. (P.10.2) Honors 	Unit 6 Quiz Nov 22 nd		
– Che	<u>(Н)</u>	• Calculate the enthalpy change for a reaction using experimental data on temperature changes, quantities of reactants, and mass of water. (P.10.2) Honors			
nit 6	Thanksgiving Break (November 23 rd – December 1 st)				
5	 T2 – Mole Concept (*P.8.9) Convert between Moles, Particles, Mass & 	 Define a "mole" as a unit used for counting atoms, molecules, and formula units. (*P.8.9) Convert between moles, particles, mass, and volume in a sample of substance. (*P.8.9) 	6 Days 3 Blocks		
	Volume		Dec 2 nd – Dec 9 th		
		Exam Review December 10 th – December 16 th			
	Teacher-Generated Semester Exam December 17 th - 20 th				

	Topic *= Benchmark Assessed on Common Final Exam	Learning Targets	Suggested Pacing
		This course has a cumulative year-long Common Final Exam	
	 T1 – Stoichiometry (*P.8.9, N.1.7) Calculate Quantities of Chemicals in Reactions Limiting Reagents Calculate Percent Yield Critical & Analytical Thinking 	 Perform calculations involving moles, mass, volume, and representative particle conversion factors in any combination using the principles of stoichiometry. (*P.8.9) Calculate the amount of product formed in a limiting reagent problem, given the quantity of two reactants. (*P.8.9) Calculate percent yield of a reaction based on the relationship between theoretical yield (from stoichiometry) and experimental yield. (*P.8.9) Work through difficult problems using critical and analytical thinking in problem solving. (N.1.7) 	17 Days 8.5 Blocks Jan 7 th – Jan 30 th Unit 7 Test Jan 31 st
Unit 8 – Fluids	 T1 – Behavior of Gases (*P.12.10) Kinetic Molecular Theory Gas Laws (Boyle's, Charles', Gay-Lussac's, Avogadro's Hypothesis) 	 Explain the Kinetic Molecular Theory. (*P.12.10) Describe elastic collisions. (*P.12.10) Identify factors that affect the behavior of gases. (*P.12.10) Identify and apply the relationships between temperature, pressure, volume, and moles using the gas laws (Boyle's, Charles', Gay-Lussac's, Avogadro's Hypothesis). (*P.12.10) Interpret the graphical representation of the relationships between T, P, V, and n. (*P.12.10) Explain the conditions under which a real gas deviates from an ideal gas. (*P.12.10) 	10 Days 5 Blocks Feb 3 rd – Feb 14 th
	 T2 - Phase Transitions (*P.12.11, P.10.5) Particle Motion Heating Curve/Phase Diagram Kinetic Molecular Theory Relate Temperature to Kinetic Energy 	 •Describe phase transitions in terms of the Kinetic Molecular Theory. (*P.12.11) •Determine the phase of a substance using a heating curve (time vs. temp) or a phase diagram. (*P.12.11) •Identify conditions under which phase changes occur. (*P.12.11) •Compare the motion of particles in different phases. (*P.12.11) •Define the relationship between the temperature in Kelvin and the average kinetic energy of particles. (P.10.5) 	10 Days 5 Blocks Feb 18 th – March 2 nd
	 T3 – Intra & Intermolecular Forces (*P.8.6, L.18.12) Intramolecular vs. Intermolecular Force Water Soluble Substances Cause & Effect of Properties of Water 	 Predict charge distribution based on electronegativity values and location of element on the periodic table. (*P.8.6) Compare the strengths of intermolecular attractions with the strengths of ionic and covalent bonds. (*P.8.6) Explain the difference between intermolecular and intramolecular forces. (*P.8.6) Explain how the interactions between water molecules accounts for the unique properties of water. (L.18.12) Relate the different properties of water with their importance to life on Earth. (L.18.12) Identify the types of substances that will dissolve in water. (L.18.12) 	8 Days 4 Blocks March 3 rd – March 12 th Unit 8 Test March 13 th

Γ	Topic *= Benchmark Assessed on Common Final Exam	Learning Targets	Suggested Pacing
	 T1 – Acid Base Theory (*P.8.11, N.1.2, N.2.2) Bronsted-Lowry & Arrhenius Experimentation 	 Define acids and bases using the Bronsted-Lowry, and Arrhenius definitions. (*P.8.11) Use experimental data to illustrate and explain the pH scale, to characterize acid-base solutions. Use the criteria for science (testable, can be verified, derived from experimentation and observations, systematic, seeks to falsify claims through testing, relies on empirical evidence) when conducting experimentation. (N.1.2) Recognize which questions can be answered through science and which questions are outside the boundaries of scientific investigation. Recognize scientific questions that can be disproved by experimentation/testing. (N.2.2) 	2 Days 1 Block March 24 th – March 25 th
it 9 – Aci	 T2 - Ion Concentration & pH (*P.8.11) Dissociation pH Scale Strength & Concentration 	 Define pH. (*P.8.11) Differentiate between acids and bases and classify a substance as acidic, basic, or neutral based on its pH, [H⁺], or [OH⁻]. (*P.8.11) Distinguish between strong and weak acids/bases based upon extent of dissociation. (P.8.11) Recognize the difference between strength of acids/bases and concentration of acids/bases. (P.8.11) 	10 Days 5 Blocks March 26 th – April 8 th <i>Unit 9 Test</i> <i>April 9th</i>
	 T1 – Forms and Transformations of Energy (P.10.1, N.4.1) Potential & Kinetic Examples of Energy Transformations 	 Recognize that energy cannot be created or destroyed, only transformed. (P.10.1) Differentiate between kinetic and potential energy. (P.10.1) Identify various examples of the transformation of energy (heat to light, light to heat, electrical to sound, sound to electrical, electrical to chemical, chemical to electrical, mechanical to electrical, nuclear to heat, etc.). (P.10.1) Explain how scientific knowledge and reasoning provide an empirically-based perspective to inform various consumer choices involving energy efficiency. (N.4.1) 	2 Days 1 Block April 13 th – April 14 th
Thermo	 T2 – Exothermic & Endothermic Reactions (*P.10.6, *P.10.7, N.1.6, P.10.8) Potential Energy Diagrams Entropy (H) Inferences from data 	 Draw, label, and interpret endothermic and exothermic energy diagrams. (*P.10.6) Identify the amount of activation energy needed based on a potential energy diagram. (*P.10.6) Explain the difference between endothermic and exothermic reactions. (*P.10.7) Classify chemical reactions and phase changes as exothermic or endothermic. (*P.10.7) Define heat as the energy transferred between matter due to a difference in temperature. (P.10.7) Collect Data/Evidence on endothermic and exothermic reactions, use tables/graphs to draw conclusions, and make inferences based on patterns or trends in the data. (N.1.6) 	5 Days 2.5 Blocks April 15 th – April 21 st <i>Unit 10</i> <i>Test</i> <i>April 22nd</i>
	Interences from data	• Predict entropy changes and spontaneity of chemical reactions. (P.10.8) Honors	Ap

	Topic *= Benchmark Assessed on Common Final Exam	Learning Targets	Suggested Pacing
– Rates & Equilibrium	 T1 – Factors that Affect Rates (*P.12.12) Surface Area, Concentration, Temperature & Catalyst Collision Theory 	 Describe how a catalyst speeds up a reaction. (*P.12.12) Using collision theory, <i>predict</i> the effect on the rate of a reaction when altering the concentration, temperature, pressure, surface area, and presence of a catalyst. (*P.12.12) 	4 Days 2 Blocks April 23 rd – April 28 th
Unit 11 – Rates	 T2 - Concepts of Equilibrium (*P.12.13) Dynamic Equilibrium LeChatelier's Principle 	 Identify and explain the factors that affect the rate of dissolving (temperature, concentration, surface area, pressure, mixing). (*P.12.13) Apply LeChatelier's principle to predict the direction of equilibrium shift when an external stress is applied. (*P.12.13) Describe reversible reactions in terms of dynamic equilibrium. (*P.12.13) Recognize characteristics of a reaction that has reached dynamic equilibrium. (*P.12.13) 	6 Days 3 Blocks April 29 th – May 6 th
Unit 12 – Nuclear Processes	 T1 - Nuclear Reactions (*P.10.12, P.10.11, P.10.10, N.4.2, L.17.15, L17.19) Chemical vs. Nuclear Reactions Radioactive Decay (alpha, beta, gamma), Fission, Fusion (H) Half-Life Calculations (H) Real world examples of Chemical & Nuclear Reactions Cost & Benefits to Society & Environment (H) 	 Identify and explain the differences between chemical and nuclear reactions. (*P.10.12) Distinguish between the different types of radiation (alpha, beta, and gamma). (P.10.11) Explain the differences between nuclear fission and fusion, and understand that there is a difference between light vs. heavy. (P.10.11) Honors Predict the type of nuclear decay based upon its neutron to proton ratio. (P.10.11) Honors Calculate the amount of radioactive substance remaining after an integral number of half-lives have passed. (P.10.11) Honors Explain both the benefits and hazards associated with the different types of nuclear energy. (L.17.19) Honors Describe the potential environmental hazards of nuclear energy. (L.17.15) Honors Evaluate the viability of nuclear energy by comparing it to the availabilities and consequences of use of nonrenewable natural resources. (L.17.15) Honors Provide examples of alternative forms of renewable energy, their effects on the environment and the viability of the uses on a large scale. (L.17.15) Honors Compare & contrast the different forms of energy in relation to their costs vs. their benefit. (L.17.15) Honors 	6 Days 3 Blocks May 7 th – May 14 th Unit 11 & 12 Test May 15 th
		Exam Review	
	May 18 th – May 21 st Common Final Exam (cumulative of year-long content) May 22 nd – May 28 th		